目前數(shù)學(xué)復(fù)習(xí)已經(jīng)到了一個拔高強(qiáng)化的階段,今天考研小編就給大家整理了一些考研數(shù)學(xué)高數(shù)重難點知識點匯總整理,希望大家可以仔細(xì)掌握哦。
第一,保持對基礎(chǔ)概念、理論的重視
考研數(shù)學(xué)試題和前幾年一樣,以考查基礎(chǔ)題目和中等題為主,因此對于高數(shù),在平時的復(fù)習(xí)中,仍然要保持對基礎(chǔ)概念、理論的重視,不要一味只做題,要及時從錯題中找出自己基礎(chǔ)中的薄弱環(huán)節(jié),對照教材和復(fù)習(xí)全書查漏補(bǔ)缺。這個內(nèi)容需要一直做到臨考前。
第二,把握好重難點
?第一章函數(shù)、極限、連續(xù):
♦重、難點:
1、求極限;
2、無窮小階的比較問題;
3、間斷點類型的判斷;
4、漸近線。
♦題型:
求分段函數(shù)的復(fù)合函數(shù);
求極限或已知極限確定原式中的常數(shù);
討論函數(shù)的連續(xù)性,判斷間斷點的類型;
無窮小階的比較;
討論連續(xù)函數(shù)在給定區(qū)間上零點的個數(shù),或確定方程在給定區(qū)間上有無實根。
?第二章一元函數(shù)微分學(xué):
♦重、難點:
1、導(dǎo)數(shù)的定義;
2、復(fù)合函數(shù)、隱函數(shù)和參數(shù)方程的求導(dǎo);
3、方程的根的相關(guān)問題;
4、微分中值定理;
5、導(dǎo)數(shù)在經(jīng)濟(jì)中的應(yīng)用(數(shù)三)。
♦題型:
求給定函數(shù)的導(dǎo)數(shù)與微分(包括高階導(dǎo)數(shù)),隱函數(shù)和由參數(shù)方程所確定的函數(shù)求導(dǎo),特別是分段函數(shù)和帶有絕對值的函數(shù)可導(dǎo)性的討論;
利用洛比達(dá)法則求不定式極限;
討論函數(shù)極值,方程的根,證明函數(shù)不等式;
利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關(guān)命題,如“證明在開區(qū)間內(nèi)至少存在一點滿足……”,此類問題證明經(jīng)常需要構(gòu)造輔助函數(shù);
幾何、物理、經(jīng)濟(jì)等方面的最大值、最小值應(yīng)用問題,解這類問題,主要是確定目標(biāo)函數(shù)和約束條件,判定所討論區(qū)間;
利用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。
?第三章一元函數(shù)積分學(xué):
♦重、難點:
1、不定積分、定積分和反常積分的基本運(yùn)算;
2、變上限積分的相關(guān)問題;
3、利用定積分求面積和旋轉(zhuǎn)體的體積。
♦題型:
計算題:計算不定積分、定積分及廣義積分;
關(guān)于變上限積分的題:如求導(dǎo)、求極限等;
有關(guān)積分中值定理和積分性質(zhì)的證明題;
定積分應(yīng)用題:計算面積,旋轉(zhuǎn)體體積,平面曲線弧長,旋轉(zhuǎn)面面積,壓力,引力,變力作功等綜合性試題。
?第四章多元函數(shù)微分學(xué):
♦重、難點:
1、多元函數(shù)的連續(xù)性、偏導(dǎo)存在以及可微三者之間的關(guān)系;
2、復(fù)合函數(shù)和隱函數(shù)求偏導(dǎo),特別是抽象函數(shù)的偏導(dǎo);
3、多元函數(shù)的極值和最值問題。
♦題型:
判定一個二元函數(shù)在一點是否連:續(xù),偏導(dǎo)數(shù)是否存在、是否可微,偏導(dǎo)數(shù)是否連續(xù);
求多元函數(shù)(特別是含有抽象函數(shù))的一階、二階偏導(dǎo)數(shù),求隱函數(shù)的一階、二階偏導(dǎo)數(shù);
求二元、三元函數(shù)的方向?qū)?shù)和梯度;
求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數(shù)的微分學(xué)與前面向量代數(shù)與空間解析幾何的綜合題,應(yīng)結(jié)合起來復(fù)習(xí);
多元函數(shù)的極值或條件極值在幾何、物理與經(jīng)濟(jì)上的應(yīng)用題;求一個二元連續(xù)函數(shù)在一個有界平面區(qū)域上的最大值和最小值。這部分應(yīng)用題多要用到其他領(lǐng)域的知識,考生在復(fù)習(xí)時要引起注意。